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Abstract

Bladder cancer (BC) is one of the most malignancies in terms of incidence and

recurrence worldwide. The aim of this study is to find out novel and prognostic

biomarkers for patients with BC. First, we identified 258 differentially expressed

genes by using GSE19915 from Gene Expression Omnibus database. Second, a total

of 33 modules were identified by constructing a coexpression network by using

weighted gene coexpression network analysis and yellow module was regarded as the

key module. Furthermore, by constructing protein–protein interaction networks, we

preliminarily picked out 13 genes. Among them, four hub genes (CCNB1, KIF4A,

TPX2, and TRIP13) were eventually identified by using five different methods

(survival analysis, one‐way analysis of variance, the Spearman correlation analysis,

receiver operating characteristic curve, and expression value comparison), which

were significantly correlated with the prognosis of BC. The validation of transcrip-

tional and translational levels made sense (based on Oncomine and The Human

Protein Atlas database). Moreover, functional enrichment analysis suggested that all

the hub genes played crucial roles in chromosome segregation, sister chromatid

segregation, nuclear chromosome segregation, mitotic nuclear division, nuclear

division, and organelle fission during cell mitosis. In addition, three of the hub genes

(KIF4A, TPX2, and TRIP13) might be potential targets of cancer drugs according to

the results of the genetical alteration. In conclusion, this study indicates that four hub

genes have great predictive value for the prognosis of BC, and may contribute to the

exploration of the further and more in‐depth research of BC.
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1 | INTRODUCTION

Bladder cancer (BC) is the most common malignancy of the urinary

system (Ebrahimi et al., 2019). There are 437,422 new cases annually

in the world according to a recent research (Ebrahimi et al., 2019).

Although in the country with health facilities well developed, BC

causes a lot of troubles (Siegel, Miller, & Jemal, 2018). For example, in

the USA, BC is the 13th most common cause of deaths among all

cancers (Siegel et al., 2018). For diagnosis, cystoscopy and biopsy are

still the gold standard (Emerson & Cheng, 2005). Unfortunately, the

average age for BC at diagnosis is 65 years, which means that most

BCs are diagnosed at an advanced stage (Shadpour, Emami, &

Haghdani, 2016). Many patients often lost the optimal chance for

most effective treatment. As for the prognosis of BC, the situation

was not optimistic. Five‐year survival rate for BC patients was

reported as low as 50–70% (Hussein et al., 2016). Moreover, it has
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been shown that about 30–70% of BC tumors will relapse (Hussein

et al., 2016). Because of the poor prognosis and difficulties in early

diagnosis, we aim to develop novel and specific prognostic markers

for patients with BC.

Weighted gene coexpression network analysis (WGCNA) has

been widely used in studying biological networks and analyzing

potential gene modules associated with large gene expression data

(Langfelder & Horvath, 2008). It can be applied to most high‐
dimensional data sets especially for genomic applications (Ivliev,

Pa, & Sergeeva, 2010). By using WGCNA, one can classify genes

into different gene modules based on their connectivity with

others. So that we can further explore the relationships between

gene modules and clinical features to find out candidate

biomarkers for cancers (Clarke et al., 2013). With the aim of

identifying biomarkers or therapeutic targets for BC, a coexpres-

sion network was constructed in this study by using TCGA‐BLCA
data. Key module related to histologic grade was selected. We also

detected differentially expressed genes (DEGs) on the basis of

GSE19195. After finishing all the steps, 13 genes were picked out

preliminarily. We used five different methods to identify hub

genes among them. Finally, four hub genes were picked out and we

validated them using two data sets (GSE13507 and GSE31684)

and six databases (Oncomine, HPA, GEO, TCGA, GEPIA, and

STRING). Based on CBioPortal, we also explored the hub genes’

correlation with other famous genes and drugs aiming at finding

new targets for anticancer drugs.

2 | MATERIALS AND METHODS

2.1 | Identification of BC microarray studies

Microarray data set of BC (TCGA‐BLCA), which was downloaded

from The Cancer Genome Atlas (TCGA) database (https://genome‐
cancer.ucsc.edu/), was used to construct coexpression network.

Data set GSE19915 (Lindgren et al., 2010) was downloaded from

Gene Expression Omnibus (GEO) database to screen DEGs (http://

www.ncbi.nlm.nih.gov/geo/). Also, data GSE13507 (Kim et al.,

2010; Lee et al., 2010) and GSE31684 (Riester et al., 2012,

2014) were used to further verify our results. Data set GSE19915

was performed on three independent platforms, GPL3883 (Swe-

gene Human 27K RAP UniGene188 array), GPL4723 (SWEGEN-

E_BAC_32K_Full), and GPL5186 (SWEGENE H_v3.0.1 35K). When

performed on GPL3883, this data set contained eight normal

urinary bladder samples and 76 urinary bladder tumor samples;

when performed on GPL5186, this data set contained seven

normal urinary bladder samples and 91 urinary bladder tumor

samples; when performed on GPL4723, this data set contained

103 urinary bladder tumor samples. So GSE19915 performed on

GPL3883 and GPL5186 was used to screen DEGs. Data set

GSE13507 performed on Illumina human‐6 v2.0 expression

beadchip included 10 normal bladder mucosae and 165 primary

BC samples. GSE31684, performed on GPL570, included 93

BC samples.

2.2 | Data preprocessing

Figure S1a showed the research process of this study. Four hundred

and eight bladder urothelial carcinoma samples from TCGA‐BLCA
were included for WGCNA analysis. We calculated the variances of

probes across all samples and top 8,000 probes with highest

variances were selected for the WGCNA analysis.

2.3 | Screening of DEGs

By means of GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/;

Davis & Meltzer, 2007), we selected DEGs between BC and normal

bladder tissues. We considered genes as DEGs when they met the

following standards: Adjust p < 0.05, and |log2 FC| ≥ 1.5. The

common DEGs in GSE19915 performed on GPL3883 and

GSE19915 performed on GPL5186 were screened for subsequent

analysis.

2.4 | Construction of a coexpression network

At the beginning, expression profile of the top 8,000 genes was

checked if they were suitable for the WGCNA by using gsg

(goodSamplesGenes) method. We further tested the expression

profile using sample network methods to distinguish outlying

samples. Samples with Z.Ku < −2.5 were regarded as outliers. All

the outliers were removed from the data. After that, a coexpression

network was constructed by using R package “WGCNA.” Based on

the scale‐free topology criterion, β (soft threshold power β) was

selected (Zhang & Horvath, 2005). Considering with the function of

topological overlap matrix (TOM; Li & Horvath, 2009), we trans-

formed adjacency into TOM. Moreover, three different branch

cutting methods (manual [interactive] branch cutting approach,

automatic single block analysis, and two‐block analysis) were

conducted for classifying genes into gene modules. A relatively large

minimum module size of minClusterSize = 30, and a medium

sensitivity (deepSplit = 2) was chosen to branch splitting. The

dissimilarity of module eigengenes (MEs) was calculated to set a

cut line for merging some modules. Additionally, a TOM plot of all

genes and a classical multidimensional scaling (MDS) plot were

plotted.

2.5 | Identification of clinical key modules

In the present study, we used two methods to identify key module

associated with the trait (histologic grade) we were interested in.

On the one hand, gene significance (GS) was calculated to quantify

the relationship between genes and trait. On the other hand,

module membership (MM) was also defined to describe the

correlation between ME and gene expression profile. Moreover,

module significance (MS, the average GS of all the genes in a

module) was defined. Eventually, the module, which was most

positively correlated with histologic grade, was regarded as the

key module.
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2.6 | Construction of protein–protein interaction
(PPI) networks

By means of the Search Tool for the Retrieval of Interacting Genes

(STRING; Szklarczyk et al., 2015), we constructed the PPI networks

of common DEGs and genes in hub module. Parameters setting:

network scoring: degree cutoff = 2; cluster finding: node score

cutoff = 0.2, k‐core = 2, and maximum depth = 100. In this study, we

calculated the degree of genes by network analyzer (a tool in

Cytoscape software (https://cytoscape.org/). Genes with degree

greater than or equal to 10 were considered to be hub genes in

the PPI network.

2.7 | Identification of hub genes

In the present study, a key module was chosen. Hub genes in

coexpression network were identified under the threshold of

|MM| > 0.50 and |GS| > 0.20. The common hub genes in coex-

pression network, PPI network of key module, and PPI network of

DEGs were picked out for follow‐up analysis. Then we used five

different methods to identify hub genes among these genes using

two GEO data sets (GSE13507 and GSE31684). Survival analysis

was performed by R package “survival” (Therneau, 2015) using

GSE13507, and we split 165 BCs into two groups based on genes

expression (high group, n = 82; low group, n = 83). This package

also generated Kaplan–Meier survival curve. The one‐way

analysis of variance (ANOVA) test and the Spearman correlation

analysis were performed using GSE13507 and GSE31684. Both of

the two analyses were performed using SPSS (IBM, Armonk, NY,

Version 21.0). Meanwhile, by means of R package “plotROC”

(Sachs, 2017), receiver operating characteristic curve (ROC)

analysis was performed. In GSE13507, we calculated the area

under curve (AUC) to distinguish BC samples from normal tissues.

In GSE31684, we used AUC to differentiate BC of high grade

from BC of low grade. After that, we compared the genes

expression levels between BCs and normal bladder tissues using

GSE13507 and TCGA‐BLCA data. The boxplots were drawn using

R package “ggstatsplot” (Patil, & Powell, 2018) and gene

expression profiling interactive analysis (GEPIA; Tang et al.,

2017). Genes satisfied the conditions (p < 0.05 in all analyses and

AUC ≥ 0.80) were considered to be hub genes in the study. An

upset plot was also performed using R package “UpSetR”

(Conway, Lex, & Gehlenborg, 2017) to overlap genes in these

five analyses. Moreover, the Pearson correlation between hub

genes and marker of proliferation Ki‐67 (MKi67) were performed

based on the TCGA‐BLCA data. Venn diagram was performed by

online tool Venn‐diagrams (http://bioinformatics.psb.ugent.be/

beg/tools/venn‐diagrams).

2.8 | Validation of hub genes

T stage (Ta, T1, T2, T3, and T4) boxplots and tumor grade

(low and high) boxplots were performed using “ggstatsplot.” In

addition, we validated the messenger RNA (mRNA)‐level and

translational‐level expressions of the hub genes based on the

Oncomine (http://www.oncomine.org/; Rhodes et al., 2004) and

The Human Protein Atlas database (https://www.proteinatlas.org/;

Uhlén et al., 2015).

2.9 | Genetical alteration of hub genes

Visualization and analysis of cancer genomic data sets can be realized

by using CBio Cancer Genomics Portal (http://www.cbioportal.org/;

Cerami et al., 2012; Gao et al., 2013). In the present study,

CBioPortal was used to explore the genetic alterations of the hub

genes and the relationships between genes and drugs.

2.10 | Investigation of the associations between
the clinical features of patients with BC and the hub
gene expression levels

Based on GSE13507, we evaluated the median of hub

genes expression levels. After that, 165 BCs from GSE13507

were divided into two groups. The associations between the

clinicopathological features of BC patients and the hub gene

expression levels were analyzed by the χ2 test through SPSS (IBM,

Version 21.0).

2.11 | Gene ontology (GO) and kyoto encyclopedia
of genes and genomes (KEGG) pathway enrichment
analysis

We performed GO (Ashburner et al., 2000) and KEGG pathway

enrichment analysis (Kanehisa & Goto, 2000) for DEGs and genes in

key module by using R package “clusterProfiler” (Yu, Wang, Han, &

He, 2012). In this study, we only showed the results of biological

process (BP) and KEGG. Gene sets at p < 0.05 were considered to be

significantly enriched.

2.12 | Gene set enrichment analysis (GSEA) and
guilt of association of hub genes

With the same method we mentioned before, the 165 BC samples

from GSE13507 were classified into two groups. GSEA (Subramanian

et al., 2005) was conducted between the two groups. Signaling

pathways reached the standards (nominal p < 0.05; |ES| > 0.6; gene

size ≥ 100; FDR < 25%) were considered significant in the present

study. Also, we performed batch Spearman correlation analysis of

hub genes using the TCGA‐BLCA data. Correlation coefficient

absolute values were calculated, and we selected the top 500 genes

of each hub gene using R packages “dplyr” and “tidyr.” Moreover,

functional enrichment analysis was performed by using “clusterPro-

filer.” According to the results, we predicted the lurking functions of

hub genes. We called this method “guilt of association.”

Then, we compared the results between GSEA and guilt of

association.
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3 | RESULTS

3.1 | Screening of DEGs

By using GEO2R, 1,322 DEGs (269 upregulated and 1,053 down-

regulated) were identified in GSE19915 performed on GPL3883

(Figure 1a), and 592 DEGs (127 upregulated and 465 downregulated)

were identified in GSE19915 performed on GPL5186 (Figure 1b).

The common DEGs, including 258 genes (33 upregulated and 225

downregulated), were used to construct a PPI network (Figure 1c,d).

The real hub genes were also labeled on the volcano plots.

3.2 | Construction of a coexpression network and
identification of key modules

Two different methods were used to identify outlier samples. After

that, a total of 28 samples were removed from the subsequent

analysis (Figure S1b,c). A total of 380 TCGA‐BLCA samples and

their clinical information were included for the WGCNA analysis. In

the present study, β = 5 (scale‐free R2 = 0.84) was set as the soft

thresholding for further adjacency calculation (Figure S2). After

classifying genes into gene modules and merging modules (pairwise

correlation of modules > 0.75), 33 modules were generated in total

(Figure S3a). Genes in gray module were removed from the further

processing. Furthermore, the ME of the yellow module (p = 6 × 10−8;

R2 = 0.27) revealed a high correlation with histologic grade (low and

high) compared with other modules (Figure 2a). The MS of yellow

module also made sense (Figure S3b). Yellow module, the most

positively associated module with histologic grade of BC, was

regarded as the key module. The relationship between MM and GS

in yellow module is shown in Figure 2b. The network heatmap was

shown in Figure 2c. A classical MDS plot was created, and each dot

(gene) is colored by the module assignment (Figure 2d).

F IGURE 1 Identification of common DEGs. (a) Volcano plot visualizing DEGs in GSE19915 performed on GPL3883. (b) Volcano plot
visualizing DEGs in GSE19915 performed on GPL5186. (c) Identification of common upregulated DEGs. (d) Identification of common
upregulated DEGs. DEG: differentially expressed gene [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Identification of hub genes

First, we constructed a PPI network of the common 258 genes.

Fifty‐eight genes that reached the cutoff criterion (degree ≥ 10) were

regarded as hub genes in DEGs (Figure 3a). Also, we constructed a

PPI network of genes in the yellow module, with the same cutoff

criterion, and 279 genes were identified as hub genes in the yellow

module PPI network (Figure 3b). The whole PPI networks of genes in

F IGURE 2 Identification of modules associated with the clinical traits of BC and construction of a classical MDS plot. (a) Heatmap of the

correlation between MEs and different clinical information of BC (days to birth, gender, height, weight, vital status, smoking history, pathologic
stage, histologic grade, and days to death). (b) Scatter plot of module eigengenes in the yellow module. (c) Interaction relationship analysis of
coexpression genes. Different colors of horizontal axis and vertical axis represent different modules. The brightness of yellow in the middle

represents the degree of connectivity of different modules. There was no significant difference in interactions among different modules,
indicating a high‐scale independence degree among these modules. (d) Classical MDS plot whose input is the TOM dissimilarity. Each dot (gene)
is colored by the module assignment. BC: bladder cancer; MDS: multidimensional scaling; ME: module eigengene; TOM: topological overlap

matrix [Color figure can be viewed at wileyonlinelibrary.com]
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yellow module and DEGs were shown in Figures S4 and S5.

Considering with module connectivity, 256 hub genes in coexpres-

sion network were identified. Based on the three methods, a total of

13 genes were common in them, which were screened out

preliminarily for further validation (Figure 3c). According to the

result of the one‐way ANOVA (Table S1), seven genes were picked

out in both data sets. The results of the Spearman correlation

analysis suggested that 10 genes showed significant p values in both

GSE31684 and GSE13507 (Table S2). According to the results of

survival analysis, nine genes made sense in both overall survival and

cancer‐specific survival (Table S3). By using GSE31684 and

GSE13507, ROC curve was plotted (Table S4). Seven genes which

reached the standard of AUC ≥ 0.80 were finally screened out.

Moreover, the gene expressions of BC and normal bladder tissues

were compared based on GSE13507 and GEPIA, and 13 of which

were differentially expressed (Figure S8a,b only showed the results

of real hub genes). Four genes were eventually identified (CCNB1,

KIF4A, TPX2, and TRIP13; Figure 3d) because they showed

significant p values in all the analyses. Thus, we considered them as

hub genes associated with progression and prognosis of BC in our

study. Figures 4–5 showed the results of survival analysis. Recently,

MKi67 was regarded as a biomarker for the growth of multiple

tumors (Felix et al., 2015). Thus, we also performed Pearson’s

correlation between MKi67 and hub genes (Figure S6).

F IGURE 3 Construction of PPI networks, Venn plot of candidate hub genes, and Upset plot of hub genes. (a) PPI network of hub genes in

DEGs. (b) PPI network of hub genes in the yellow module. (c) Common hub genes in the coexpression network and PPI network. (d) Common
genes with significant p value in survival analysis, ROC curve analysis, one‐way ANOVA, the Spearman correlation analysis, and DEG analysis
(an Upset plot). ANOVA: analysis of variance; DEG: differentially expressed gene; PPI: protein–protein interaction; ROC: receiver operating

characteristic curve [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Validation and genetical alteration of hub
genes

Based on GSE13507 and GSE31684, the grade and stage boxplots of

hub genes were shown in Figure S7. In addition, mRNA expression

levels were all significantly higher in BC tissues than those in normal

bladder tissues (Figure S8c), which was suggested by Oncomine

database. Figure S9 showed the translational‐level expression of hub

genes. These results made the hub genes we screened out reliable. As

for genetical alteration, four hub genes altered in 159 (39%) of 412

patients (Figure 6b). As shown in Figure 6a, TRIP13 altered most

(23%) and the main type was mRNA upregulation. A network

containing 58 genes (three real hub genes and 55 most variant genes)

is shown in Figure 6c. TP53 was significantly vital in the network. As

for the relationship between anticancer drugs and hub genes, we

found CCNB1 was the target of cancer drugs. But there was no drug

F IGURE 4 Survival analysis of the association between the expression levels of hub genes and overall survival time in BC (based on
GSE13507). (a) CCNB1, (b) KIF4A, (c) TPX2, and (d) TRIP13. BC: bladder cancer [Color figure can be viewed at wileyonlinelibrary.com]
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targeting to the rest three hub genes, which might be novel

therapeutic targets for patients with BC.

3.5 | Associations between hub gene expression
levels and clinical features

Based on GSE13507, we collected the clinical information of 165

patients. We brought seven clinical factors (age, gender, progression,

grade, T stage, N stage, and M stage) into this step. The results

suggested that CCNB1 expression level in BC was statistically

related to age, progression, grade, T stage, and N stage (Table 1);

KIF4A expression level in BC was statistically related to age, gender,

progression, grade, T stage, and N stage (Table 1); TPX2 expression

level in BC was statistically related to age, gender, progression,

grade, T stage, and N stage (Table 1); TRIP13 expression level in BC

was statistically related to age, progression, grade, T stage, and

F IGURE 5 Survival analysis of the association between the expression levels of hub genes and cancer‐specific survival time in BC (based on
GSE13507). (a) CCNB1, (b) KIF4A, (c) TPX2, and (d) TRIP13. BC: bladder cancer [Color figure can be viewed at wileyonlinelibrary.com]
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N stage (Table 1). All p values were available in Table 1. All in all, high

expression levels of the four genes were relevant to the tumor

progression of BC probably.

3.6 | Functional and pathway enrichment analysis

GO analysis results showed that DEGs were enriched in various BPs,

the top 10 terms were extracellular matrix organization, extracellular

structure organization, muscle system process, muscle contraction,

cell‐substrate adhesion, regulation of muscle system process, regula-

tion of peptidase activity, regulation of cell‐substrate adhesion,

regulation of actin filament‐based process, and regulation of muscle

contraction (Figure 7a). And genes in the yellow module were

enriched in chromosome segregation, sister chromatid segregation,

nuclear chromosome segregation, mitotic nuclear division, mitotic

sister chromatid segregation, nuclear division, organelle fission, DNA

replication, sister chromatid cohesion, and DNA conformation

change (Figure 7c).

As for the pathways, the results of KEGG enrichment analysis

showed that DEGs were enriched in PI3K‐Akt signaling pathway,

focal adhesion, vascular smooth muscle contraction, cGMP‐PKG

signaling pathway, proteoglycans in cancer, AGE‐RAGE signaling

pathway in diabetic complications, human cytomegalovirus infection,

ECM–receptor interaction, malaria, and amebiasis (Figure 7b). As for

genes in the yellow module, they enriched in cell cycle, mismatch

repair, RNA transport, DNA replication, spliceosome, oocyte meiosis,

nucleotide excision repair, base excision repair, progesterone‐
mediated oocyte maturation, and one carbon pool by folate

(Figure 7d).

3.7 | GSEA and guilt of association

With the cutoff criteria we set before, a total of eight CCNB1‐
related signaling pathways were enriched, and the top three

pathways were “spermatogenesis,” “mTORC1 signaling,” and “G2M

checkpoint” (Figure 8a). Totally nine KIF4A‐related signaling path-

ways were enriched, and the top three pathways were “spermato-

genesis,” “unfolded protein response,” and “G2M checkpoint”

(Figure 8). Totally nine TPX2‐related signaling pathways were

enriched, and the top three pathways were “spermatogenesis,”

“G2M checkpoint,” and “unfolded protein response” (Figure 8c).

Totally nine TRIP13‐related signaling pathways were enriched, and

F IGURE 6 Genetic alterations associated with hub genes in TCGA‐BLCA. (a) A visual summary across on a query of four hub genes showing
genetic alteration of hub genes in TCGA‐BLCA patients. (b) The total alteration frequency of four hub genes in TCGA‐BLCA is illustrated. (c) The
network contains 58 nodes, including our four query genes and the 55 most frequently altered neighbor genes (only three out of four were

correlated with the 55 genes). Relationship between hub genes and tumor drugs is also illustrated. mRNA: messenger RNA [Color figure can be
viewed at wileyonlinelibrary.com]
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the top three pathways were “spermatogenesis,” “unfolded protein

response,” and “G2M checkpoint” (Figure 8d). Moreover, “sperma-

togenesis” and “G2M checkpoint” were the common signaling

pathways in all of real hub gene‐related pathways. According to

the results of guilt of association, we found that all real hub genes

played important roles in many events during cell mitosis, such as

chromosome segregation, sister chromatid segregation, nuclear

chromosome segregation, mitotic nuclear division, nuclear division,

and organelle fission (Figure S10).

4 | DISCUSSION

BC, the commonest urinary malignancy, can occur at any age. BC is

particularly liable to relapse after combined therapy (Rye, Nustad, &

Stigbrand, 2003). What’s worse, BC carries a very poor prognosis

when developing into infiltrating BC (Rye et al., 2003). Although

radical cystoprostatectomy is the most efficient therapy for patients

with infiltrating BC nowadays, it will cause many bad consequences

and weaken the quality of life of its victims (Stein et al., 2001).

Histologic grade of malignant tumors reflects the internal character-

istics of tumors, which is of great value for evaluation of the degree

of tumor differentiation and prediction of prognosis. Given that most

BCs are diagnosed with advanced stages, the prognosis of patients

with BC remains extremely poor. Therefore, we expect to find some

sensitive and novel biomarkers that can predict tumor grade and

prognosis of BC patients. And we also determine to screen out a few

promising targets of new cancer drugs.

In the present study, we screened out 258 DEGs by using

GSE19915. Moreover, we constructed a PPI network of DEGs to find

out hub genes in DEGs. By means of WGCNA analysis, we

constructed a coexpression network by using TCGA‐BLCA data.

We brought nine clinical features (days to birth, gender, height,

weight, vital status, smoking history, pathologic stage, histologic

grade, and days to death) into this study. We also attempted to find a

key module which was most relevant to the histologic grade of BC.

Thirty‐three modules were identified. Among them, the yellow

module was most positively correlated with the histologic grade.

Four hundered and seventy‐two genes made up this module, 256 of

which were regarded as hub genes in the coexpression network.

Relying on the STRING, 279 genes with degree ≥ 10 were considered

as hub genes in PPI network of yellow module. With the same cutoff

criterion, 58 genes were screened out in PPI network of DEGs.

Preliminarily, 13 genes which were common in these networks were

identified. To find out hub genes among the 13 genes, five different

analyses were performed. Four hub genes (CCNB1, KIF4A, TPX2, and

TRIP13) related to tumor grade and poor prognosis of BC were

finally identified. These hub genes were also highly expressed in

tumors comparing with normal tissues using GSE13507 and TCGA‐
BLCA data.

F IGURE 7 Bioinformatics analysis of DEGs and genes in yellow module. (a) GO analysis of DEGs. (b) KEGG pathway enrichment of DEGs.
(c) GO analysis of genes in yellow module. (d) KEGG pathway enrichment of genes in yellow module. DEG: differentially expressed gene;
ECM: extracellular matrix; GO: gene ontology; KEGG: kyoto encyclopedia of genes and genomes [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 8 Gene set enrichment analysis. The top three functional genes sets enriched in bladder cancer with CCNB1 (a), KIF4A (b), TPX2 (c),
and TRIP13 (d) [Color figure can be viewed at wileyonlinelibrary.com]

12 | YAN ET AL.



The validations of hub genes in mRNA level and translational

level were carried out using two databases. After that, we used

CBioPortal to explore the relationship between the hub genes and

drugs aiming at finding new targets for anticancer drugs. We found

that CCNB1 was already the target for anticancer drugs, which

meant the remaining genes (KIF4A, TPX2, and TRIP13) probably

became potent drug targets. To improve the reliability of results,

based on GSE13507, we brought seven factors into the analysis of

clinical characteristics among BC patients. The associations between

the clinicopathological features of BC patients and the hub genes

expression levels were analyzed by using the same data set

GSE13507. The results suggested that expression levels of all the

four hub genes in BC tissues were associated with age, progression,

grade, T stage, and N stage. Although we did not perform this

analysis in TCGA‐BLCA data (the data used for WGCNA analysis),

this might be a statistical limitation of this part of the study. It might

be better for us to do this part in TCGA‐BLCA data to keep the

consistency of patient cohort. But make our results more universal

and representative, we chose to do this part by using GSE13507. The

gene expression data and the clinical information were all got from

GSE13507. GSE13507 was also a representational data set with

many BC samples, which made these results reliable. When talking

about T stage, recent research showed that BC stage was an

independent prognostic factor of muscle‐invasive BC (MIBC)

patients. MIBC (T stage ≥ T2) is related to poor clinical prognosis.

This coincides with outcomes in this study.

According to the GO BP analysis, DEGs in GSE19915 were

majorly participated in extracellular matrix organization, extracel-

lular structure organization, muscle system process, and so on;

meanwhile, genes in yellow module were enriched in chromosome

segregation, sister chromatid segregation, nuclear chromosome

segregation, and so on. As for KEGG analysis, DEGs in GSE19915

were enriched in focal adhesion, vascular smooth muscle contraction,

cGMP‐PKG signaling pathway, and so on; meanwhile, genes in yellow

module were obviously relevant to cell cycle, DNA replication,

mismatch repair, and so on. To further understand the signaling

pathways regulated by real hub genes, we performed GSEA analysis

by the aid of GSE13507. All the hub genes were relevant to

spermatogenesis and G2M checkpoint. According to the results of

guilt of association, we firmly believed that hub genes played

important roles in many events during cell mitosis, such as

chromosome segregation, sister chromatid segregation, nuclear

chromosome segregation, mitotic nuclear division, nuclear division,

and organelle fission.

For a deeper and better understanding of the four hub genes, a

literature review was carried out. G2/mitogen‐specific cyclin B1,

encoded by CCNB1 in human, was a regulatory protein involved in

mitosis (Sartor, Ehlert, Grzeschik, Mu Ller, & Adolph, 1992). CCNB1

could form a complex called cyclin B1/cdc2 (maturation‐promoting

factor [MPF]) with p34 (cdc2; Milatovich & Francke, 1992). This

complex was involved in early mitosis, such as chromosome

condensation, nuclear membrane decomposition, and spindle pole

assembly. Activation of cdc2 caused cells to enter the M phase from

G2 phase (Kimura, Hirano, Kobayashi, & Hirano, 1998). With the

disintegration of MPF complex, the expression of cyclin B1 decreased

rapidly. Cdc2 activity was inhibited, and cells further entered the

anaphase of mitosis. Kinesin family member 4, a kind of newly

discovered kinesins, included KIF4A, KIF4B, KIF4C, and KIF4D (Ha

et al., 2000). Kumiko et al. (2012) showed that KIF4A was a

multifunctional dynein molecule, which could interact with other

dynein molecules. This dynein molecule participated in chromosome

segregation, chromosome condensation (Mazumdar, Sundareshan, &

Misteli, 2004), spindle formation (Wandke et al., 2012), and DNA

damage response (Wu et al., 2008) during cell mitosis. TPX2, a

microtubule‐associated protein, played a crucial role in cell mitosis,

especially in spindle formation (Neumayer, Belzil, Gruss, & Nguyen,

2014). Microtubule was the main component of spindle (Wei, Zhang,

Wynn, & Seemann, 2015). TPX2 played an important role in spindle

assembly and maintaining the integrity of spindle (Cocchiola et al.,

2014; Gruss et al., 2002). As for TRIP13, it has already been

identified as oncogene (Wang et al., 2014). Overexpression of

TRIP13 led to many human cancers, such as head and neck squamous

cell carcinoma (Banerjee et al., 2016) and prostate cancer (Larkin

et al., 2012). During mitosis, TRIP13 could affect the function of

spindle assembly checkpoint (Musacchio & Salmon, 2007; Wang

et al., 2014). Combining this with our study, we believed that all the

hub genes played crucial roles in many events during cell mitosis,

especially in chromosome segregation and spindle formation. Thus,

we forecasted the four hub genes played important roles in the cause

and development of BC by affecting mitosis boldly.

Some limitations of our study also should be discussed. First,

the correlations between the four hub genes (CCNB1, KIF4A,

TPX2, and TRIP13) and clinical features were performed on

GSE13507 instead of TCGA‐BLCA data (the data set used for

coexpression network). This might destroy the consistency of

patient cohort and we will validate the correlations in our further

research. Second, although we designed this bioinformatic study

well and used strict thresholds for each database mining and

subsequent analysis, the major drawback in this study was the lack

of in vivo and in vitro validation. Therefore, we will further use a

variety of cell lines, tissues, and animal experiments to carry out

systematic verification after we have made prospective design and

preparation (especially when tissue testing requires informed

consent of patients and medical ethics approval).

5 | CONCLUSIONS

To sum up, the present study used various bioinformatics analysis

tools to identify four novel hub genes, which may serve key roles

in the tumorigenesis, progression and prognosis of human BC.

Meanwhile, we predicted the potential function of the grade‐ and

prognosis‐related hub genes, which participated in cell mitosis. The

four hub genes might be novel biomarkers of BC and three of them

might be novel potential drug targets. However, the lack of in vivo

and in vitro experiments is a limitation of the present study, further
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molecular biological experiments are required to confirm the present

findings, and confirm the role and function of these hub genes in BC.
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